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Quantum Mechanics in Finite Dimensions 
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Received January 21, 1975 

We explicitly compute, following the method o f  Weyl, the commutator [Q, PI 
o f  the position operator Q and the momentum operator P o f  a particle when the 
dimension o f  the space on which they act is finite with a discrete spectrum; 
and we show that in the limit o f  a continuous spectrum with the dimension 
going to infinity this reduces to the usual relation o f  Heisenberg. 

1. INTRODUCTION 

Weyt m has shown that the Schr6dinger representation is a necessary 
consequence of Heisenberg's commutation relation. He proves this using 
the ray representations of the Abelian group of  rotations and an ingenious 
limiting process to go from finite rotations in ray space to a two-parameter 
continuous group. This approach has been particularly emphasized by 
Schwinger, (2) who has also shown that such operators form a complete set and 
furnish a basis for measurement symbols. More recently, Ramakrishnan c~) 
and his collaborators have studied exhaustively the representation theory of  
generalized Clifford algebra, which yields the ray representations of the 
Abelian group of  rotations. 

In this paper we derive, by limiting to the case of finite dimensions, 
the commutator [Q, P], where Q and P are the position and momentum 
operators respectively. We show that by going to the limit of continuous 
parametrization (valid as the dimension goes to infinity), we recover the 
standard Heisenberg relations. 

We believe that this work will open the possibility of studying quantum 
mechanics in finite-dimensional space with a discrete spectrum. 
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2. WEYL'S FORM OF THE HEISENBERG RELATION 

Suppose A and B are two elements of the Abelian group of unitary 
rotations in a ray space so that 

A B  = o J B A  (1) 

where oJ is the primitive nth root of unity. By iteration we have 

Al~B ~ = o J ~ B ~ A  7~ (2) 

from which it follows that A ~ commutes with B and B ~ commutes with A; 
and if the representation is irreducible, it follows from Schur's lemma that 

A ~ -= I, B n = I (3) 

In the diagonal representation for B, i.e,, 

B = diag(1, co, co 2 ..... w ~-1) (4) 

A has the form (1) of a cyclic permutation matrix 

1°1°°" ' i)  0010 
A = /~000  (5) \1ooo 

The interesting properties of the algebra satisfied by operators like A 
and B, which is a generalization of the usual Clifford algebra, have been 
studied by Schwinger, (z) Morinaga and Nono, (4) Yamazaki, (5) and Morris, ~G) 
while its connection with physical problems through the study of specific 
representations has been systematically carried out by Ramakrishnan and 
collaborators.(2) 

If  one identifies 
A = e ice, B = e i'~O (6) 

where ~ and ~/are arbitrary real parameters, then it follows that Eq. (6) is the 
Weyl form of the Heisenberg commutation relation 

[Q, P]  = i I  (7) 

if we allow power series expansion of operator exponentials (which is 
justified if A and B are bounded, but not otherwise; see, e.g., Ref. 7). Weyl 
takes the limit of infinitesimal ~ and ~ with n -+ oo such that ~7~7 = 2rr to 
show that 

P = (1/i) O/eq (8) 
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3. FINITE D I M E N S I O N S  

We now solve Eq. (6) for P and Q by taking logarithms. That  is, given 
Eq. (6) where A and B satisfy Eqs. (2) and (3), we evaluate the commutator  
[Q, P] and show that it becomes Eq. (7) in the continuous limit. We take the 
diagonal form for B given by Eq. (4) and Eq. (5) for A. 

Since any circulant matrix like A is diagonalized by the Sylvester matrix 
S, we have 

S - ~ A S  = B (9) 

with 

and 

... !j_ ¢A) (.0 2 " "" (on--l~ 

S = n - i ~  2 092 co~ .. .  co - 2  (9') 

O)~g--i con--2 ,.. 

S-~ = S+ (i0) 

One obtains from Eq. (6), on taking logarithms, 

i ~ P  = log A ~ S(log B ) S  -~ 

i~lQ = log B 

where 
log B ----- (log co) diag(0, 1, 2,.. ,  n --  1) 

(11) 

(12) 

(13) 

Since A and B are nonsingular and diagonalizable, it follows (8) that log A and 
log B exist. Of  course, they are multivalued. Elementwise, labeling the rows 
and columns from 0 to n -- 1, one gets 

B~8 = c o ~ ,  S~,~ = n-1/2co ~ 
(14) 

(S-1)r~ = n-1/2oo - ~ ,  (log B)~ = (log co) r8,~8 

Next we consider the commutator 

K = [i~Q, i~P] = [log B, S(log B)S -1] (15) 

We have 

x .  - ( log  co)~ (r - ~) ~ uco ~ - ~ )  0 6 )  
H u=O 

If  co~-8 = x = 1, then 

Kr8 -- (log co)2 (r - -  s )  n (n  - -  1) (17) 
n 2 
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I f  x v ~ 1, then, since x n = 1, there results 

and hence 

Thus,  we find 

and 

n - 1  

Z (18) 
x - - 1  

K , . ,  - -  (log co) z (r - -  s) n (19) 
11 0 9  r - s  - -  l 

[Q, p]r ,  = (s - r)(log o~) ~ n ( n  - 1) when oJ'-* = 1 (20) 
n~:~/ 2 ' 

[Q, p ] . .  = (s - r)(log co) z n when co"-' @ 1 (21) 
n~/  o~ " - 8 -  1 '  

We notice that  since n is finite, one could choose ~ = ~/ = 1 and that  [Q, P]  
is off-diagonal and hence trace-free, as it should be for bounded  operators.  

I t  can now be proved that  the commuta t ion  relation given by Eqs. (21) 
and (22) does indeed yield the Heisenberg commuta t ion  relation in the limit 
as n --+ co. Beginning with Eq. (16), we relabel the rows and columns f rom 
-- (n  - -  1)/2 to (n - -  1)/2 and replace the sum by an integral, that  is, we let 
the matrix index take cont inuous values. (901°) Thus the sum 

n--I 
[Q, p]~, _ (log o~) 2 ~. u ( r  - s ) o J  ~-*  (22) 

n~:~ ~=0 

reduces in the limit n --+ co to the integral 

[Q, p]~. = (log o~)~ (r - s )  u e ~ ' ~ ' ( r - 8 ) / ' ~  d u  

d r~° 
= -i(.-.) +_,) J e'"'"-",'. 

= - - i ( r  - -  s )  8'(r - -  s) 

= i a ( r  - -  s )  (23) 

where we have used n ~  = 2rr valid when ~ and ~ are infinitesimal and 
n--* co. This completes the proof.  The eigenvalues o f  the operator  Q are 
given by 

q = k~ m od  n~ (24) 

when k is any integer. However,  since in this limit we have n ~  = 27r, it 
follows that  n~ = 2~/~/. 
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As has been pointed out by Weyl, by choosing ~7 infinitesimal, ns e can be 
made to approach infinity, so that q = k~. We use this trick in retaining 
only the principal value of (log m) in this limit. 

4. CONCLUSIONS 

We have evaluated the commutator  [Q, P] when the space on which the 
operators act is finite and has a discrete spectrum. The commutator  for 
finite n is elevated to what we call "quantum mechanics in finite-dimensional 
discrete space." I t  turns out that the commutator  is off-diagonal and hence 
trace-free (as it should be) for finite n. This implies no "uncertainty" and no 
"zero-point energy" if these concepts have any meaning for finite n. Of 
course, in the limiting case as n approaches infinity continuously, the 
commutator  becomes strictly diagonal and reduces to a multiple of  the Dirac 
delta function, thus restoring the Heisenberg commutat ion relations. 
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